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SIMULATION ISSUES:

o NUMERICS (accuracy, convergence)

o GEOMETRY (body-fitted grids, unstructured grids)
o COMPUTATIONAL RESOURCES (Time, Storage)



JOINT VELOCITY-SCALAR PDF METHOD

SIGNIFICANT MILESTONES AND RECENT PROGRESS

o 2-D and 3-D time dependent flows (with finite-volume method)
(Anand et al. 1987, Haworth & El Tahry 1989)

o Stochastic dissipation model development and validation
(Pope & Chen 1990, Pope 1991, Anand et al. 1993)

o 2-D Elliptic flows (mean pressure algorithm), swirling flows
(Anand et. 1989, 1993)

o Spray treatment
(Anand 1990)

o Manifold methods for reaction kinetics
(Maas & Pope 1992, 1994; Norris & Pope 1994; Norris & Hsu 1994)

o Solve Poisson equation for mean pressure: 5 5
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o Satisfy continuity by solving for velocity correction potential, velocity correction:
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o Solution algorithm is consistent with B-spline representation of mean fields

o Same descretized form: A.s=b

o A is a banded matrix, constant
and same for both <p> and ¢

o LU decomposition only once 4-

o Special band solver economizes
storage and computational effort

o Judicious implementation of the
algorithm results in significant
economy in computer resource L
requirement
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TURBULENT COMBUSTION MODELING ISSUES
(FOR GAS TURBINE COMBUSTORS)

0 Most promising method for turbulent reacting flows

ATTRIBUTES OF DIFFERENT PDF METHODS

Method Attributes Limitations/shortcomings
Joint PDF of ¢ Reaction treated Assumes gradient-diffusion,
exactly Does not give velocityfieid
(requires e.g, k)
Turbulence/chemistry interactions
not fully simulated
Joint PDF of Reaction exact, Needs € equation
Uand ¢ Convection (mean and {or equivalent)

turbulent) exact,
Variable-density effects

exact
Joint PDF of ... In addition
U,¢,and o Provides complete closure,

Treats turbulent streams of
different scales,

Can account for effects of
large scale structures

PDF CALCULATIONS FOR A RECIRCULATING FLOW
(Anand et al. 1989)
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STOCHASTIC DISSIPATION MODEL

o Provides complete closure of the PDF equation (joint velocity-frequency-scalar)

o More realistic than a mean dissipation model. Dissipation (rather, turbulent
frequency) is also a random variable and included in the joint PDF.

o Treats multiple scales in the flow
o Accounts for internal intermittency

o Accounts for effects of large scale structures, and influence of origin and history
of the fluid particles :

d®* = -@* <> (S + Cy Q) dt + <w>2 h dt + ©" (2C; <> 6Y)1/2dW

dt+D,dt+(C k0% dw,

SWIRLING FLOWS

o No theoretical limitations
o Additional production terms due to non-zero mean swirl velocity
o Additional terms in calculating the mean pressure (or mean pressure gradients)
- Boundary layer flows:
> radial pressure gradient

> axial pressure gradient also included

- Elliptic flows
> additional terms in the Poisson equation for pressure

o Validation of the stochastic dissipation model and first calculation of swirling
flows with the joint PDF method (Anand et al. 1993)
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PATIONS FOR SWIRLING FLOWS

LINES - CALCULATIONS
SWIRLING COAXIAL JETS . . SYMBOLS - DATA
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JOINT PDF CALCULATIONS FOR SWIRLING FLOWS

COMPARISON WITH REYNOLDS-STRESS MODEL RESULTS AND
ASSESSMENT OF GRADIENT DIFFUSION MODELING
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SPRAY CALCULATIONS
{Anand 1990)

o Advanced spray models (stochastic 105 micron glass beads, NASA HOST C data

Lagrangian, Monte Carlo) naturally wee e 2w em
compatible with the joint PDF method [ o
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o Low dimensional manifold methods (ILDM, TGLDM)
- Given detailed kinetcs, they provide low-dimensional description
(e.g., 1-D, 2-D, 3-D) in multidimensional composition/scalar space
- Use dynmical systems theory to determine the low. dim. manifold
- Avoid ad hoc assumptions, e.g, partial equilibrium of some of the reactions
Implications for ignition and lean blow-off
- Not fuel specific like conventional reduced kinetic schemes
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PARALLEL PROCESSING

o Objective: Turnaround time of 1day or less for 3-D combustor calculations
o Particle partitioning, domain decomposition (muitigrid, multi-block)

o Preliminary results for 2-D flow with particle partitioning (Pope 1994)

- 16 nodes, 128 MB each, IBM SP1

- 12.8 million particles (800,000 per processor)
- 50 time steps

- 44 minutes/processor (45 minutes clock time)

Extrapolation to 3-D combustor caiculations
- 6.5 hours clock time with 32 processor SP1

JOINT PDF FOCUS AREAS

o 3-D Flows, Improved solution algarithms

o Paralle! processing

o Reduced kinetics / Low Dimensional Manifolds
o Evaporating / reacting sprays

o Emphasis on emissions and performance predictions

105






